Single Layer Recurrent Neural Network for Detection of Local Swarm-like Earthquakes - the Application

J. Doubravová and J. Horálek

Institute of Geophysics, Dpt. of Seismology

CzechGeo Workshop, 4.12.2019

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Supported project: Acronym: CzechGeo/EPOS-Sci Registration number: CZ.02.1.01/0.0/0.0/16_013/0001800

J. Doubravová and J. Horálek

Single Layer Recurrent Neural Network for Detection of Local Swarm-like

Outline

1 Artificial neural networks

2 SLRNN and training

- Single Layer Recurrent Neural Network
- SLRNN training
- False detections
- Undetected events

3 Application

- Application to Webnet
- Application to Reykjanet

Motivation

- continual data produced by dense seismic networks must be reduced
- detection of seismic events should:
 - minimize false detections
 - detect also weak events
- neural networks can extract useful information and generalize to unseen examples, forward problem is solved fast

Artificial neuron

• *n* real inputs
$$x = \text{dendrites}$$
, bias $x_0 = 1$

• weights
$$w =$$
 synaptic weights, bias $w_0 = -h$ threshold

• activation potential
$$\xi = \sum_{i=0}^{n} w_i x_i$$

• activation function $y = \sigma(\xi) = egin{cases} 1, & \xi \geq 0 \\ 0, & \xi < 0 \end{cases}$

J. Doubravová and J. Horálek

Single Layer Recurrent Neural Network for Detection of Local Swarm-like

æ

Artificial neural network

- neurons interconnected into networks to solve complex problems
- typical tasks: classification, pattern recognition, regression

Single Layer Recurrent Neural Network SLRNN training False detections Undetected events

SLRNN - architecture

- outputs fed back as inputs = recurrence, memory
- variable delay $D_1..D_d$

Single Layer Recurrent Neural Network SLRNN training False detections Undetected events

SLRNN - architecture

• 8 neurons, 18 inputs, 3 outputs (event, P, S)

• delays 1, 2, 4, and 8 samples - 4x8=32 feedbacks

ъ

Single Layer Recurrent Neural Network SLRNN training False detections Undetected events

SLRNN - data preprocessing

STA/LTA in 9 narrow-band filtered velocity records

Filter

bank

9 x

IIR filters

Z 0.6-1 Hz

Z 25-40 Hz

E 25-40 Hz

• decimation to 0.2 s

J. Doubravová and J. Horálek

 $\sqrt{N^2 + E^2}$

vertical 0.6-1 Hz

vertical 25-40 Hz

horizontal 0.6-1 Hz

horizontal 25-40 Hz.

Single Layer Recurrent Neural Network for Detection of Local Swarm-like

э

Single Layer Recurrent Neural Networl SLRNN training False detections Undetected events

Training

- supervised learning: searching w_{ij} to fit required outputs for training set
- seismic swarm 2008 (events) and calm year 2010 (disturbances) WEBNET (West Bohemia)

Single Layer Recurrent Neural Network SLRNN training False detections Undetected events

WEBNET

- West Bohemia/Vogtland
- seismic swarms, CO2 emanations

(a)

- 24 stations at present
- 16 stations online
- 250Hz, 3C velocity records

Single Layer Recurrent Neural Network SLRNN training False detections Undetected events

False detections ?

- tested on swarm 2011, single station detection
- many false detections
- many events => small events without manual reading

Artificial neural networks SLRNN and training Application Undetected events

Undetected events Ev. $M_L = 2.3$ and $M_L = 2.2$ in coda of $M_L = 3.8$

J. Doubravová and J. Horálek Single Layer Recurrent Neural Network for Detection of Local Swarm-like

э

Artificial neural networks SLRNN and training Application Undetected events

Undetected events $M_L = -0.3$ noisy record on KAC

J. Doubravová and J. Horálek Single Layer Recurrent Neural Network for Detection of Local Swarm-like

Artificial neural networks SLRNN and training Application Application Application Artificial neural Networks SLRNN training False detections Undetected events

Undetected events weak amplitudes on POC $M_I = 0.2$

J. Doubravová and J. Horálek Single Layer Recurrent Neural Network for Detection of Local Swarm-like

Artificial neural networks SLRNN and training Application Undetected events

How to solve it?

- we have high number of false detections / or very weak events too much events to process
- few undetected events really unacceptable
- => WE MUST USE COINCIDENCE IN THE NETWORK

J. Doubravová and J. Horálek Single Layer Recurrent Neural Network for Detection of Local Swarm-like

イロト イポト イヨト イヨト

Application to Webnet Application to Reykjanet

Coincidence

- when a human processes waveforms, he takes into account all the stations at once
- let the machine see detection outputs of the stations at once
- for each detection we look for sufficient number of detections on other stations in certain time window

(a)

Application to Webnet Application to Reykjanet

Coincidence

- single-station detection during the swarm seismogram/detection output
- dashed line marks event in catalogue with $M_L = 0.9$
- yellow stripes mark events after coincidence

Application to Webnet Application to Reykjanet

Coincidence

- outputs for whole network
- 15 stations, 6 stations-coincidence required
- yellow stripes mark events after coincidence

J. Doubravová and J. Horálek

Single Layer Recurrent Neural Network for Detection of Local Swarm-like

Application to Webnet Application to Reykjanet

Webnet

- even there is a good detection and location provided by PEPIN, there are some limitations
- especially events outside the NK focal zone could be missing

(a)

 example -10/18-11/18 processed manually to the lowest possible magnitudes, background seismicity

Application to Webnet Application to Reykjanet

Webnet

- 6-station coincidence is sufficient for completeness magnitude $M_c = 0$
- 4-station coincidence found all manual events downt to $M_L = -0.5$
- but the number of false events is much higher (20% vs. 60%)

< 日 > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э.

Application to Webnet Application to Reykjanet

Reykjanet network

- south-west Iceland, Reykjanes peninsula
- 15 off-line stations
 - size of the network, number of stations, earthquake swarm activity - similar to WB

(日) (同) (三) (三) (三)

Application to Webnet Application to Reykjanet

Reykjanet network

J. Doubravová and J. Horálek Single Layer Recurrent Neural Network for Detection of Local Swarm-like

(a)

э

Application to Webnet Application to Reykjanet

Data: 5 activities 2014-2017

- the best SLRNN network trained for WEBNET
- 10/2014 (2days, $M_{Lmax} = 2.8$)
- $3/2015 (1 day, M_{Lmax} = 2.2)$
- 4/2015 (3days, $M_{Lmax} = 1.6$)
- 5/2015 (2days, $M_{Lmax} = 3.5$)
- 7/2017 (3days, $M_{Lmax} = 3.9$)

イロト イポト イヨト イヨト

э

Application to Webnet Application to Reykjanet

Number of events

- SIL IMO catalog manually revised automatic locations from Icelandic regional network
- Antelope automatic catalog by Antelope from Reykjanet stations (B. Růžek)
- PePiN automatic locations from PePiN (T. Fischer)
- ANN detection (no location)

(a)

Application to Webnet Application to Reykjanet

Swarm 2017

- 1 hr detail
- SIL (56) vs.
 manual (281)
- all detected by SLRNN

Application to Webnet Application to Reykjanet

Background seismicity 6-12 June 2017

- 34 events in SIL catalog (green)
- 37 more by SLRNN (red)

(a)

э

Application to Webnet Application to Reykjanet

Conclusion

- SLRNN detector is fast and effective
- the training dataset must be prepared with special care
- coincidence within a network solves undetected events and reduces reasonably number of false detections
- further processing will reveal weak events as they can't be successfully localized
- the neural network trained for West Bohemia works well for Reykjanet good generalization

イロト イポト イヨト イヨト